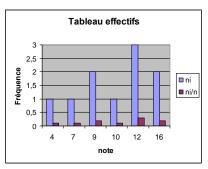
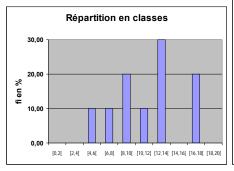
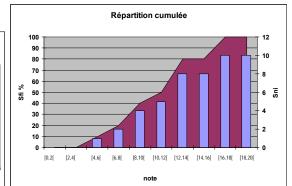
STATISTIQUES


VOCABULAIRE


Population	Ensemble de personnes ou d'objets sur lesquels porte une enquête statistique.	= Ensemble de référence ex : les élèves d'une classe
Caractère	Particularité que l'on veut étudier sur une population statistique donnée	Ex : note, age, sexe
• Individu	Chaque élément d'une population statistique	= unité statistique ex : élève
• quantitatif	Un caractère est quantitatif quand on peut le mesurer en associant un nombre à un individu	= x _i Continu : quand le nombre est un réel Discret : quand le nombre est un entier
• qualitatif	Un caractère est qualitatif s'il n'est pas mesurable	Ex : couleurs, profession
Effectif	Nombre d'individus vérifiant un caractère	Total : <i>n</i> nombre total d'individus
Fréquence	Rapport du nombre d'individus vérifiant un caractère sur le nombre total d'individus	$f_i = n/n$ toujours compris entre 0 et 1 peut être exprimé en %


TABLEAUX

•	Tableau des mesures	Pour chaque individu, on a une mesure d'un caractère Reclasser ces mesures par valeurs croissantes	ex : population = classe caractère = note mesure = note effectif : 10 élèves 4,7,9,9,10,12,12,12,16,16										
•	Tableau des effectifs	Caractère : note x_i Effectif:nbre d'élèves n_i Fréquence : n_i/n	x _i n _i n _i /n %	4 1 0.1 10	7 1 0.1 10	9 2 0.2 20	10 1 0.1 10	12 3 0.3 30	16 2 0.2 20				
•	Répartition en classes	On regroupe les valeurs du caractère en intervalles réguliers de même amplitude	x _i n _i n _i /n %	[0,2[0 0 0	[2,4[0 0	[4,6] 1 0.1 10	[6,8[1 0.1 10	[8,10] 2 0.2 20	[10,12[1 0.1 10	[12,14[3 0.3 30	[14,16] 0 0	[16,18[2 0.2 20	[18,20] 0 0 0
•	Répartition cumulée en classes	On ajoute progressivement toutes les valeurs	x_i Σn_i $\Sigma \%$	[0,2[0 0	[2,4[0 0	[4,6[1 10	[6,8[2 20	[8,10[4 40	[10,12[5 50	[12,14[8 80	[14,16[8 80	[16,18[10 100	[18,20[10 100

GRAPHES

Annie Noelle GARAND 25/10/2013 1

STATISTIQUES

PARAMETRES

Moyenne

De n nombres $x_1, x_2, x_3, ..., x_n$:

$$\frac{-}{x} = \frac{x_1 + x_2 + x_3 + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Si on compte n_i fois la même mesure x_i , on a p mesures différentes:

$$\frac{1}{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{n} = \frac{1}{n} \sum_{i=1}^{p} n_i x_i = \sum_{i=1}^{p} \frac{n_i x_i}{n} = \sum_{i=1}^{p} f_i x_i$$

Si l'échantillon est réparti en classes, la valeur de la mesure à retenir est : $\overline{x_i}$ le centre de la classe i, soit, le milieu de la classe $[x_{i-1},x_i]$:

avec
$$n = \sum_{1}^{p} n_i$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{p} n_i \overline{x}_i = \sum_{i=1}^{p} f_i \overline{x}_i$$

• Propriétés de la moyenne

	Superposition séries	décalage de k	multiplier par l
nouvelle moyenne	$m=\bar{a}+\bar{b}$	m = a + k	$m = l \cdot \overline{a}$

Médiane

C'est la valeur du caractère x_i qui sépare la population en deux groupes égaux, il y a donc 50% des mesures qui sont supérieures à la médiane.

Quand on utilise le tableau des effectifs cumulés, c'est le centre de la classe correspondant à une fréquence cumulée de 50%.

Mode

Valeur **du caractère** $\overline{x_i}$ dont l'effectif est le plus grand.

(paramètre de position).

Classe modale: classe dont l'effectif est le plus grand.

Etendue

Différence entre la valeur maxi et la valeur mini du caractère.

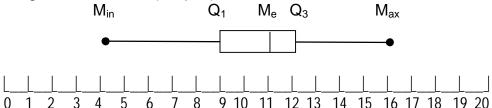
(paramètre de dispersion)

2

Quartile

 Q_1 Valeur du caractère x_i qui sépare la population en $\frac{1}{4}$ $\frac{3}{4}$, il y a 25% des mesures qui sont inférieures au premier quartile.

 Q_3 Valeur du caractère x_i qui sépare la population en $\frac{3}{4}$ $\frac{1}{4}$, il y a 25% des mesures qui sont supérieures au dernier quartile.


Décile

Valeurs des caractères qui séparent la population en 1/10 . Médiane, quartiles, et déciles sont faciles à déterminer sur le graphe des fréquences cumulées.

STATISTIQUES

Boîte à moustache

Diagramme en boîte (boxplot):

Ecart Interquartile

On garde les 50% centraux entre Q₁ et Q₃.

Variance

C'est la moyenne du carré des écarts à la moyenne

$$V = \frac{1}{n} \sum_{i=1}^{p} n_{i} (x_{i} - \overline{x})^{2} = \frac{1}{n} \left(\sum_{i=1}^{p} n_{i} x_{i}^{2} \right) - \overline{x}^{2}$$

$$V = \sum_{i=1}^{p} f_{i} (x_{i} - \overline{x})^{2} = \left(\sum_{i=1}^{p} f_{i} x_{i}^{2} \right) - \overline{x}^{2} = \sigma^{2}$$

Ecart type

Standard de déviation

$$\sigma = \sqrt{V}$$

RESUME D'UNE SERIE STATISTIQUE

(Moyenne, Ecart type)

ou

(Médiane, écart interquartile)

PROBABILITES

VOCABULAIRE

• Univers Ω	Ensemble des résultats d'une expérience aléatoire.	Réponses à une question,où intervient le hasard.			
Cardinal Car(Nombre d'éléments d'une épreuve	Nombre de cas			
• Evènement A	Partie ou sous ensemble de A	Une question			
Evènement certain	Ω	Tout			
Evènement impossible	Ø	Rien			
 Evènement contraire ⊂_ΩA 	Complémentaire de A ou non A	\overline{A}			
• Union A∪E	A ou B				
• Intersection A∩E	A et B	A et B simultanément à la fois			
Evènement incompatibles	A et B à la fois est impossible				

PROBABILITE

Dans le cas équiprobable :

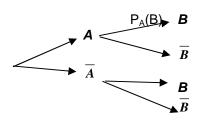
$$P(A) = \frac{\text{nbre de cas favorables}}{\text{Nbre total de cas}} = \frac{Car(A)}{Car(\Omega)}$$

$$P(\Omega) = 1$$

$$0 \le P(A) \le 1$$

$$P(\subset_{\Omega} A) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$


Evènements incompatibles : $P(A \cup B) = P(A) + P(B)$ Evénements indépendants : $P(A \cap B) = P(A) \cdot P(B)$

Probabilités conditionnelles

On s'intéresse à deux évènements successifs :

Probabilité de B sachant A:

 $P(B/A) = PA(B) = P(A \cap B)/P(A)$

Annie Noelle GARAND 25/10/2013 4